谷歌推出ASPIRE框架 用于增强大模型的选择性预测能力

1月22日讯 在人工智能领域中,大型语言模型(LLMs)的重要性不言而喻。然而,传统的LLMs在预测过程中存在困难,无法对生成的答案的准确性进行自我评估。此外,传统方法通常难以可靠地区分正确和错误答案。

ASPIRE框架的出现则提供了一种新的解决方案,通过对LLMs进行微调,并训练它们自我评估生成的答案的正确性,从而增强LLMs的选择性预测能力。

谷歌推出ASPIRE框架 用于增强大模型的选择性预测能力

ASPIRE框架的引入为LLMs的选择性预测能力提供了新的解决方案。该框架通过对LLMs进行微调,训练LLMs评估其生成的答案的正确性,从而实现了LLMs的自我评估和选择性预测。ASPIRE框架的出现填补了传统LLMs在高风险决策应用方面的空白,为LLMs的应用提供了更可靠的预测能力。

传统的LLMs在生成答案时存在困难,无法对答案的准确性进行自我评估。而ASPIRE框架的出现则为LLMs的选择性预测提供了新的解决方案,通过对LLMs进行微调,训练LLMs评估生成答案的准确性,从而提高了LLMs的可靠性和可信度。

在传统的LLMs中,无法对生成答案的准确性进行自我评估,这限制了LLMs在高风险决策应用中的应用。然而,引入ASPIRE框架填补了这一空白,通过对LLMs进行微调和自我评估训练,提高了LLMs的选择性预测能力,为LLMs的应用提供了更高的可靠性和可信度。

声明:魔果智讯倡导尊重与保护知识产权。如发现本站文章存在版权等问题,烦请30天内提供版权疑问、身份证明、版权证明、联系方式等发邮件至moguoai@yeah.net!我们将及时沟通与处理。
0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索