DeepSeek 团队开源新模型 DeepSeek-OCR:少量视觉 token 完成海量文本压缩

10月20日讯 今天上午,DeepSeek-AI 团队发布《DeepSeek-OCR:Contexts Optical Compression》论文,提出利用视觉模态压缩长文本上下文的新方法。Hugging Face 页面显示,该模型的参数量为 3B。

DeepSeek 团队开源新模型 DeepSeek-OCR:少量视觉 token 完成海量文本压缩

根据介绍,此次开源的 DeepSeek-OCR 由两个部分组成:核心编码器 DeepEncoder 和解码器 DeepSeek3B-MoE-A570M。DeepEncoder 专为在高分辨率输入下保持低计算激活而设计,同时实现高压缩比,以控制视觉 token 数量在可管理的范围内。实验显示,当文本 token 数量不超过视觉 token 的 10 倍(压缩比低于 10×)时,模型的 OCR 精度可达 97%;即便压缩比提高到 20×,准确率仍保持约 60%,展现出在历史文档长上下文压缩和大语言模型记忆机制研究中的巨大潜力。DeepSeek-OCR 同时具备较高的实际应用价值。

在 OmniDocBench 测试中,DeepSeek-OCR 使用 100 个视觉 token 就超过了 GOT-OCR2.0(每页 256 个 token),而使用不到 800 个视觉 token 便优于 MinerU2.0(平均每页超过 6000 个 token)。

在实际生产中,DeepSeek-OCR 可在单块 A100-40G 显卡上每天生成超过 20 万页的大语言模型 / 视觉语言模型训练数据。

DeepSeek 团队开源新模型 DeepSeek-OCR:少量视觉 token 完成海量文本压缩
DeepSeek 团队开源新模型 DeepSeek-OCR:少量视觉 token 完成海量文本压缩

相关开源如下:

声明:魔果智讯倡导尊重与保护知识产权。如发现本站文章存在版权等问题,烦请30天内提供版权疑问、身份证明、版权证明、联系方式等发邮件至moguoai@yeah.net!我们将及时沟通与处理。
0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索